20,401 research outputs found

    Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection

    Full text link
    We consider the problem of distinguishing, with minimum probability of error, two optical beam-splitter channels with unequal complex-valued reflectivities using general quantum probe states entangled over M signal and M' idler mode pairs of which the signal modes are bounced off the beam splitter while the idler modes are retained losslessly. We obtain a lower bound on the output state fidelity valid for any pure input state. We define number-diagonal signal (NDS) states to be input states whose density operator in the signal modes is diagonal in the multimode number basis. For such input states, we derive series formulas for the optimal error probability, the output state fidelity, and the Chernoff-type upper bounds on the error probability. For the special cases of quantum reading of a classical digital memory and target detection (for which the reflectivities are real valued), we show that for a given input signal photon probability distribution, the fidelity is minimized by the NDS states with that distribution and that for a given average total signal energy N_s, the fidelity is minimized by any multimode Fock state with N_s total signal photons. For reading of an ideal memory, it is shown that Fock state inputs minimize the Chernoff bound. For target detection under high-loss conditions, a no-go result showing the lack of appreciable quantum advantage over coherent state transmitters is derived. A comparison of the error probability performance for quantum reading of number state and two-mode squeezed vacuum state (or EPR state) transmitters relative to coherent state transmitters is presented for various values of the reflectances. While the nonclassical states in general perform better than the coherent state, the quantitative performance gains differ depending on the values of the reflectances.Comment: 12 pages, 7 figures. This closely approximates the published version. The major change from v2 is that Section IV has been re-organized, with a no-go result for target detection under high loss conditions highlighted. The last sentence of the abstract has been deleted to conform to the arXiv word limit. Please see the PDF for the full abstrac

    Thermal conductivity of graphene in Corbino membrane geometry

    Full text link
    Local laser excitation and temperature readout from the intensity ratio of Stokes to anti-Stokes Raman scattering signals are employed to study the thermal properties of a large graphene membrane. The concluded value of the heat conductivity coefficient \kappa ~ 600 W/m \cdot K is smaller than previously reported but still validates the conclusion that graphene is a very good thermal conductor.Comment: 4 pages, 3 figure

    Changes in the measured image separation of the gravitational lens system, PKS 1830-211

    Full text link
    We present eight epochs of 43 GHz, dual-polarisation VLBA observations of the gravitational lens system PKS 1830-211, made over fourteen weeks. A bright, compact ``core'' and a faint extended ``jet'' are clearly seen in maps of both lensed images at all eight epochs. The relative separation of the radio centroid of the cores (as measured on the sky) changes by up to 87 micro arcsec between subsequent epochs. A comparison with the previous 43 GHz VLBA observations (Garrett et al. 1997) made 8 months earlier show even larger deviations in the separation of up to 201 micro arcsec. The measured changes are most likely produced by changes in the brightness distribution of the background source, enhanced by the magnification of the lens. A relative magnification matrix that is applicable on the milliarcsecond scale has been determined by relating two vectors (the ``core-jet'' separations and the offsets of the polarised and total intensity emission) in the two lensed images. The determinant of this matrix, -1.13 +/-0.61, is in good agreement with the measured flux density ratio of the two images. The matrix predicts that the 10 mas long jet, that is clearly seen in previous 15 and 8.4 GHz VLBA observations (Garrett et al. 1997, Guirado et al. 1999), should correspond to a 4 mas long jet trailing to the south-east of the SW image. The clear non-detection of this trailing jet is a strong evidence for sub-structure in the lens and may require more realistic lens models to be invoked, e.g. Nair & Garrett (2000).Comment: 8 pages, 5 figure
    • …
    corecore